
MFM - Disks
issues, infos , problems

Background:
The ST506-Interface was designed in 1982 by the company Seagate for their 5 ¼-
inch drive ST506 (5.4 MB) , ST412 (10.1 MB) and ST225(20.4 MB) and every well-
known computer manufacturer was using this technology. The ST506-Interface is
working based on the MFM(Modified Frequency Modulation) recording method:

But:
Each manufacturer did have its own implementation according to the

slogan :
 Be 100% incompatible with any other manufacturer

References:

https://github.com/pdp11gy/SoC-HPS-based-MFM-disk-emulator
Download and unzip the file MFM-disk_Emulator_SoC.zip

http://www.pdp11gy.com/

http://www.minuszerodegrees.net/manuals/Seagate/Seagate%20ST506%20-
%20Service%20Manual%20-%20May82.pdf

MFM timing overview

The MFM transfer bandwidth is defined as 5 MHz = 0.2 uSec. The FPGA clock is
running at 80 MHz, = 0,0125 uSec. which is 16 times higher. This was necessary to
prevent a chitter, primarily with the MFM Encoder, also implemented in the same
way at the RL RL01 / RL02 emulator project. The entire design runs synchronously
in real time based on the 80MHz clock. Since the design runs in real time, MFM
decoding can be done “on the fly”. It’s a real time design, based on FPGA CyclonV

https://en.wikipedia.org/wiki/ST-506#https://en.wikipedia.org/wiki/ST-506
http://www.minuszerodegrees.net/manuals/Seagate/Seagate%20ST506%20-%20Service%20Manual%20-%20May82.pdf
http://www.minuszerodegrees.net/manuals/Seagate/Seagate%20ST506%20-%20Service%20Manual%20-%20May82.pdf
http://www.pdp11gy.com/
https://github.com/pdp11gy/SoC-HPS-based-MFM-disk-emulator
https://en.wikipedia.org/wiki/Modified_Frequency_Modulation#https://en.wikipedia.org/wiki/Modified_Frequency_Modulation

Requirements :
During development, I had chosen a method to write a well-defined pattern on the
disk. This method was very helpful for the RL01 / RL02 emulator development, so I
did use this method in the development of the MFM disk emulator as well.
Abstract, used Pattern:
1) DEC 00 255 , HEX 00 FF , BIN 0000 0000 FFFF FFFF

test change from short to long cycle
2) DEC 51 , HEX 33 , BIN 0011 0011

test long cycle to long cycle
3) DEC 85 , HEX 55 , BIN 0101 0101

test verylong to verylong cycle

I used a RT-11 basic (from 1985) program as follow and copied the
output file to a MFM disk.

5 A$="" \ B$="" \ PRINT "GENERATE TEST-PATTERN"
6 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
11 FOR I=1 TO 5 \ A$=A$+CHR$(255)+CHR$(0) \ NEXT I // Pattern 1
18 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
21 FOR I=1 TO 5 \ A$=A$+CHR$(51) \ NEXT I // Pattern 2
28 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
31 FOR I=1 TO 5 \ A$=A$+CHR$(85) \ NEXT I // Pattern 3
38 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
41 FOR I=1 TO 3 \ A$=A$+CHR$(73)+CHR$(146)+CHR$(36) \ NEXT I // 0x43, 0x92, 0xDC
48 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
51 FOR I=1 TO 3 \ A$=A$+CHR$(35)+CHR$(145)+CHR$(220) \ NEXT I
58 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
61 FOR I=1 TO 10 \ A$=A$+CHR$(128) \ NEXT I // 1000 0000 = 0x80
68 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
71 FOR I=1 TO 3 \ A$=A$+CHR$(231)+CHR$(156)+CHR$(243) \ NEXT I
78 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
81 FOR I=1 TO 3 \ A$=A$+CHR$(99)+CHR$(140)+CHR$(241) \ NEXT I
91 FOR I=1 TO 10 \ A$=A$+CHR$(127) \ NEXT I // 0111 1111 = 0x7F
98 FOR I=1 TO 5 \ A$=A$+CHR$(0) \ NEXT I
510 A$=A$+CHR$(10)+CHR$(13)
520 A$=A$+"STELL DIR VOR ES IST KRIEG UND KEINER GEHT HIN"
525 A$=A$+CHR$(10)+CHR$(13)
540 A$=A$+" IMAGINE IT IS WAR AND NOBODY GOAS THERE "
545 A$=A$+CHR$(10)+CHR$(13)
550 PRINT "A-STRING-LAENGE: ";LEN(A$)
610 FOR I=1 TO 19
620 A$=A$+CHR$(255)+CHR$(0)
630 NEXT I
635 A$=A$+CHR$(0)
636 PRINT "A$ STRING-LENGTH: ";LEN(A$) // Should be 255
640 FOR I=1 TO 125 \ B$=B$+CHR$(0) \ NEXT I
642 B$=B$+CHR$(255)+CHR$(255)+CHR$(0)+CHR$(0)+CHR$(255)+CHR$(255)
650 FOR I=132 TO 254 \ B$=B$+CHR$(0) \ NEXT I
660 B$=B$+CHR$(0)
691 PRINT "B$ STRING-LENGTH: ";LEN(B$) // Should be 255
699 goto 800
700 OPEN "DU0:PATT4.TXT" FOR OUTPUT AS FILE #1
720 FOR I=1 TO 5000
730 PRINT #1,A$;
731 PRINT #1,CHR$(0);
740 PRINT #1,B$;
741 PRINT #1,CHR$(0);
750 NEXT I
760 CLOSE #1
770 PRINT "DONE"
800 END

Of course you can also implement the program in C (see my source code), but at these time
it did not exist. The following figure shows the timing from pattern 1 to 3 and Data AM

The folder software /READC/contains the program readc. This program reads a cylinder and a
track with head 1 and saves the data to the SD card. Then you can view the file with a HEX editor.

 Here is an example where you can find the Pattern 1 to 3 again:

Very important is the field data AM (A5 F8 @ 3A3). That's the section now where open
points/questions begin.

With reference to the SEAGATE ST-506 Manual, the disk format is Pre-configured as in the
following picture:

Capacity

 Nominal Track Capacity: = 10416 (Byte)
 Total Data Bytes/Track = 256 x 32 = 8192
 SYNC = 13x00 = 13 x 32 = 416
 ID AM = 2 Byte = 2 x 32 = 64
 CYL/HD/SEC = 3 Byte = 3 x 32 = 96
 Header-CRC = 2 Byte = 2 x 32 = 64
 Gap2 3 + 13 = 16Byte = 16 x 32 = 512
 Data AM = 2 Byte = 2 x 32 = 64
 Data-CRC = 2 Byte = 2 x 32 = 64
 Gap3 1of2 = 3x00 = 3 x 32 = 96
 Gap3 2of2 = 15x4E = 15 x 32 = 480
 ------------------------+-----------------
 SECTOR: 314 TRACK: 10048 | CYLINDER: 40192
 Einmalig dazu: Gap1 16x4E = 16 | 64
 Gap4 352x4E = 352 | 1408
 ----------------+-----------------
 (Byte) 10416 | 41664
 (Bit) 83328 | 333312
 (Word) 5208 | 20832
 ==========================+=================

Understanding and analysis
The interface and the corresponding signals were described in detail by the company Seagate
and were widely respected. It looks quite different at data and timing format. Everything here
is incompatible. Each manufacturer has guaranteed implemented his own track and data
format which was genarated with their own low-level format program. The following
differences exist:
>> CRC algorithm is different, such as different preset value.
>> Track format: ID AM differently.
>> Track format: DATA AM differently.
>> SYNC character differently.
Even the same manufacturer, for example, DEC. There were different formats used . A disk ,
formatted with the RQDX-1 controller Disk could not be used in a RQDX-3 environment.

Problems

At the moment I am only able to work reasonably with a PDP-11/23 / RQDX-1 and RD51. The
RQDX-3 is broken, my Schneider PC is broken and my ST225 disk is also broken. (I hope to get
my SANYO PC up and running soon).

In a PDP-11/23 /RQDX-1 environment, I found strange things concernig the timing outside
the data field. I found too short and too long MFM gaps.

Example, logic analyser:

The MFM decoder (MFM-disk_Emulator_SoC/my_Verilogs/MFM_gap_DECODER_V1_0.v) is
able to detect too short and too long MFM gaps. If a wrong gap is detected, then a flipflop is
switching. Usually the following times are correct :

short = 0,2 uSec
long = 0.3 uSec
verylong = 0.4 uSec

There may be small deviations but in this case too short MFM gaps with 80nSec and too long
MFM gaps with 0.52 or 0.72 uSec could be found.
This symptom confuses the timing with the result that the data FlipFlop sometimes tilts
uncontrolled. Thus the data are wrong and the boundaries of the byte counter are also no longer
correct .

Sometimes a too long cycle comes direct after a too short cycle like in following picture:

Note : The symptom is not visible in the data field.

I don’t know exactly how to handle this cylcles. At the moment, I switch the data to low on a
too long cycle detection. Important to know : I could not see this peculiar symptom in the PC
environment (My problem: At the moment, I don’t have any PC related reference hardware).

The way for a solution:
The indicator for data field is the end of the data AM (A5 F8) . So you can find the beginning
of the data in the sector. But unfortunately each manufacturer has always used a different data AM
pattern.

Solution:
The MFM_gap_DECODER_V1_0.v will trigger on detection of a Data AM pattern.
These decoder makes real-time MFM-decoding with serial and 8 bit parallel output
and will allign it to byte boundary after detecting the 16 bit Data AM pattern . With
these possibilities a .img file can be created in real-time to be also compatible with the
SIMH project.

Handicap:
For each manufacturer, you have to analyze it individually to get the proper Data AM
pattern. I can not do that alone! Any hint and help is welcome

Note: It is intended to create for each disk-type its own configuration file. This can be modified
with any standard editor.

To verify the detection of a Data AM pattern, use the program soc_mfm_beta/MFM/readc.
Exmple:

 root@socfpga:~/MFM# ./readc

 ***** MFM-DISK READER @ Soc/HPS *****
 READ one Cylinder+Track and save it to SD card
 DE10-Nano ST-506/412/225 Beta Version
 **
 (c) Reinhard Heuberger WWW.PDP11GY.COM

 >>>>>> DEBUG-MODE = ON <<<<<<
 >>>> Device Type = ST506 <<<<
 **
 **************** +Test-Mode **************
 **

 Anzahl der Cylinder: 153
 Drive_select #0 DRV_SLCTD = LOW
 Drive_select #1 DRV_SLCTD = LOW
 Drive_select #2 DRV_SLCTD = HIGH
 READY = HIGH
 SEEK_cmplt = HIGH
 TRACK_0 = LOW
 DRV_SLCTD = HIGH
 Drive = ready
 Drive is NOT @ home
 Drive positioned to home

 Cylinder - nummer eingeben: 112

 Trigger DataAM , (4Hex, like A5F8) :A5F8

 Cylinder: 112 ,Trigger DataAM: lsb : 0xA5 msb: 0xF8

 ************ Step to Cylinder 112 done ***********

 Select Head 1 … 2 … 3 … 4

 found: DataAM_msb 0xA5 DataAM_lsb 0xF8 @ 529 Nr.: 1 Gap: 530
 found: DataAM_msb 0xA5 DataAM_lsb 0xF8 @ 1312 Nr.: 2 Gap: 783
 found: DataAM_msb 0xA5 DataAM_lsb 0xF8 @ 1882 Nr.: 3 Gap: 570
 found: DataAM_msb 0xA5 DataAM_lsb 0xF8 @ 2453 Nr.: 4 Gap: 571
 found: DataAM_msb 0xA5 DataAM_lsb 0xF8 @ 3024 Nr.: 5 Gap: 571
.
.
.
 found: DataAM_msb 0xA5 DataAM_lsb 0xF8 @ 41303 Nr.: 66 Gap: 571

 Save track@head1 data-image to SD-Card into file: ST506-Track-image_112.dsk

 Save 1 cylinder data to SD-Card into file: ST506-cylinder_112.mfm

 *********** Select Head 1 and loop **********

 Save 1 track@head1 data to SD-Card into file: ST506-Track_head1_112.mfm

 Press RESET/Button-1 for exit, Reconfig/Button-2 for restart
^C

Info: I could not see the too long/too short symptom on a disk in a Schneider PC

Any hint and help is welcome

Would be nice if someone can get Data AM pattern and disk data from another vendor.
Maybe you can also find the data in the source listing of the low level format program or
use the method with the test-pattern and a HEX edit as explained on page 2 and 3 .
If there is no other way, unfortunately the data has to be recorded with a logic analyzer.

Logic analyser connections:
8 test pins are configured from the Arduino Uno R3 Expansion Header . See DE10-Nano
user manual, chapter 3.6.3.

Arduino_IO2 PIN_AG10 Arduino IO2 = Test_1
Arduino_IO3 PIN_AG9 Arduino IO3 = Test_2
Arduino_IO4 PIN_U14 Arduino IO4 = Test_3
Arduino_IO5 PIN_U13 Arduino IO5 = Test_4
Arduino_IO6 PIN_AG8 Arduino IO6 = Test_5
Arduino_IO7 PIN_AH8 Arduino IO7 = Test_6
Arduino_IO8 PIN_AF17 Arduino IO8 = Test_7
Arduino_IO9 PIN_AE15 Arduino IO9 = Test_8

For comments and questions, please contact me.
Reinhard Heuberger
INFO@pdp11gy.com

mailto:INFO@pdp11gy.com

